Microchip PIC32MZ1064DAB288 Manual

Microchip Ikke kategoriseret PIC32MZ1064DAB288

Læs nedenfor 📖 manual på dansk for Microchip PIC32MZ1064DAB288 (156 sider) i kategorien Ikke kategoriseret. Denne guide var nyttig for 5 personer og blev bedømt med 4.5 stjerner i gennemsnit af 2 brugere

Side 1/156
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-1
Section 22. 12-bit High-Speed Successive Approximation
Register (SAR) Analog-to-Digital Converter (ADC)
This section of the manual contains the following major topics:
22.1 Introduction .................................................................................................................. 22-2
22.2 Control Registers ......................................................................................................... 22-6
22.3 ADC Operation........................................................................................................... 22-61
22.4 ADC Module Configuration ........................................................................................ 22-65
22.5 Additional ADC Functions .......................................................................................... 22-85
22.6 Interrupts.................................................................................................................. 22-108
22.7 Operation During Power-Saving Modes .................................................................. 22-114
22.8 Effects of Reset........................................................................................................ 22-116
22.9 Transfer Function..................................................................................................... 22-116
22.10 ADC Sampling Requirements.................................................................................. 22-117
22.11 Connection Considerations...................................................................................... 22-117
22.12 Related Application Notes........................................................................................ 22-118
22.13 Revision History ....................................................................................................... 22-119
PIC32 Family Reference Manual
DS60001344E-page 22-2 © 2015-2019 Microchip Technology Inc.
22.1 INTRODUCTION
The PIC32 12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital
Converter (ADC) includes the following features:
12-bit resolution
Up to eight ADC modules with dedicated Sample and Hold (S&H) circuits (see Note 1)
Two dedicated ADC modules can be combined in Turbo mode to provide double
conversion rate
Single-ended and/or differential inputs
Can operate during Sleep mode
Supports touch sense applications
Up to six digital comparators
Up to six digital filters supporting two modes:
- Oversampling mode
- Averaging mode
FIFO and DMA engine for dedicated ADC modules (see Note 2)
Early interrupt generation resulting in faster processing of converted data
Designed for motor control, power conversion, and general purpose applications
The dedicated ADC modules use a single input (or its alternate) and is intended for high-speed
and precise sampling of time-sensitive or transient inputs, whereas the shared ADC module
incorporates a multiplexer on the input to facilitate a larger group of inputs, with slower sampling,
and provides flexible automated scanning option through the input scan logic.
For each ADC module, the analog inputs are connected to the S&H capacitor. The clock,
sampling time, and output data resolution for each ADC module can be set independently. The
ADC module performs the conversion of the input analog signal based on the configurations set
in the registers. When conversion is complete, the final result is stored in the result buffer for the
specific analog input and is passed to the digital filter and digital comparator if configured to use
data from this particular sample.
A simplified block diagram of the ADC module is illustrated in Figure 22-1.
Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device, this manual section may not apply to all
PIC32 devices.
Please refer to the note at the beginning of the ADC” chapter in the current device
data sheet to check whether this document supports the device you are using.
Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
Note 1: Depending on the device, the 12-bit High-Speed SAR ADC has up to seven
dedicated ADC modules and one shared ADC module. Throughout this chapter,
the diagrams and code examples refer to a device with seven dedicated ADC
modules (ADC0-ADC6) and one shared ADC (ADC7). Please consult the “ADC”
chapter in the specific device data sheet to determine which ADC modules are
available for your device.
2: This feature is not available on all devices. Refer to the “ADC” chapter in the
specific device data sheet to determine availability.
3: Prior to enabling the ADC module, the user application must copy the ADC
calibration data (DEVADCx) from the Configuration memory into the ADC
Configuration registers (ADC0CFG-ADC7CFG). Refer to the “ADC” chapter in the
specific device data sheet for more information.
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-3
Section 22. 12-bit High-Speed SAR ADC
Figure 22-1: ADC Block Diagram
Note: The number of ADC modules, analog inputs, ANa, ANb, ANc, and ANd, and the FIFO and DMA features
are shown as an example. Refer to the “ADC” chapter in the specific device data sheet to determine the
actual ANx selections, ADC module availability, and the specific FIFO and DMA features.
ADC0
ADC7
AV
DD
AV
SS
V
REF
+ V
REF
-
VREFSEL<2:0>
V
REFH
V
REFL
ADCSEL<1:0>
CONCLKDIV<5:0>
T
CY
FRC PBCLK
T
Q
ADCDIV<6:0>
(ADCxTIME<22:16>)
ADCDIV<6:0>
(ADCCON2<6:0>)
T
AD0
-T
AD6
T
AD7
ADDATA0
…...
ADDATA63
(Dedicated
ADC)
(Dedicated
ADC)
FIFO
DMA
Digital Filter
Digital Comparator Interrupt/Event
Capacitive Voltage
Divider (CVD) Interrupt/Event
Triggers,
Turbo Channel,
Scan Control Logic
Trigger
Status and Control
Registers
ADC6
SH0ALT<1:0>
(ADCTRGMODE<17:16>)
ANx
V
REFL
0
1
DIFFx<1>
(ADCIMCONx<x>)
ANa
AN1
V
REFL
0
1
DIFF1<1>
(ADCIMCON1<3>)
SH6ALT<1:0>
(ADCTRGMODE<29:28>)
ANx
V
REFL
0
1
DIFFx<1>
(ADCIMCONx<x>)
AN49
IV
CTMU
IV
BAT
AN48
AN7
CVD
Capacitor
T
CLK
ANb
ANc
ANd
00
01
10
11
ANb
ANc
ANd
00
01
10
11
SYSTEMBUS
ANa
Interrupt
Data
PIC32 Family Reference Manual
DS60001344E-page 22-4 © 2015-2019 Microchip Technology Inc.
Figure 22-2: FIFO Block Diagram
FEN
(ADCFSTAT<31>
FIFO
(Depth Device Dependent)
ADCFIFO DATA<31:0>
ADCID<2:0>
ADCFSTAT<2:0> ADCx ID
ADCx ID Converted Data
ADC6
ADC6EN
(ADCFSTAT<30>)
ADC5
ADC5EN
(ADCFSTAT<29>)
ADC0
ADC0EN
(ADCFSTAT<24>)
If data
available in
FIFO
FRDY
ADCFSTAT<22>
FIEN
(ADCFSTAT<23>
Interrupt
FCNT<7:0>
ADCFSTAT<15:8>
(Number of data in FIFO)
Note: The number of ADC modules, analog inputs, ANa, ANb, ANc, and ANd, and the FIFO and DMA features
are shown as an example. Refer to the “ADC” chapter in the specific device data sheet to determine the
actual ANx selections, ADC module availability, and the specific FIFO and DMA features.
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-5
Section 22. 12-bit High-Speed SAR ADC
Figure 22-3: DMA Block Diagram
DMAGEN
(ADCDMASTAT<31>)
ADC6
DMAEN
(ADC6TIME<23>)
ADC5
ADC0
DMAEN
(ADC5TIME<23>)
DMAEN
(ADC0TIME<23>)
Buffer A (ADC0)
Buffer B (ADC0)
Buffer A (ADC1)
Buffer B (ADC1)
Buffer A (ADC6)
Buffer B (ADC6)
2
DMABL<2:0>
2
DMABL<2:0>
2
DMABL<2:0>
Buffer
Full?
RAF0
(ADCDMASTAT<0>)
RAFIEN0
(ADCDMASTAT<8>)
Interrupt
Buffer
Full?
RBF6
(ADCDMASTAT<22>)
RBFIEN6
(ADCDMASTAT<30>)
Interrupt
Data Count for Buffer-A
(ADC0)
Data Count for Buffer-B
(ADC0)
Data Count for Buffer-A
(ADC1)
Data Count for Buffer-B
(ADC1)
Data Count for Buffer-A
(ADC6)
Data Count for Buffer-B
(ADC6)
DMABADDR<31:0>
CNTBADDR<31:0>
CNTBADDR<31:0> + 1
CNTBADDR<31:0> + 2
CNTBADDR<31:0> + 3
Note: The number of ADC modules, analog inputs, ANa, ANb, ANc, and ANd, and the FIFO and DMA features
are shown as an example. Refer to the “ADC” chapter in the specific device data sheet to determine the
actual ANx selections, ADC module availability, and the specific FIFO and DMA features.
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-9
ADCTRG6
31:16 — TRGSRC23<4:0>
15:0 — TRGSRC21<4:0>
ADCTRG7
31:16 — TRGSRC27<4:0>
15:0 — TRGSRC25<4:0>
ADCTRG8
31:16 — TRGSRC31<4:0>
15:0 — TRGSRC29<4:0>
ADCCMPCON1
31:16 CVDDATA<15:0>
15:0 AINID<5:0> ENDCMP DCMPGIEN DCMPED IEBTWN I
ADCCMPCONx
‘x’ = 2-6
31:16 — — — —
15:0 AINID<4:0> ENDCMP DCMPGIEN DCMPED IEBTWN I
ADCFSTAT
31:16 FEN ADC6EN ADC5EN ADC4EN ADC3EN ADC2EN ADC1EN ADC0EN FIEN FRDY FWROVERR
15:0 FCNT<7:0> FSIGN — — —
ADCFIFO
31:16 DATA<31:16>
15:0 DATA<15:0>
ADCBASE
31:16 — — — —
15:0 ADCBASE<15:0>
ADCDMASTAT
31:16 DMAGEN RBFIEN6 RBFIEN5 RBFIEN4 RBFIEN3 RBFIEN2 RBFIEN1 RBFIEN0 DMAWROVERR RBF6 RBF5 RBF4
15:0 DMACNTEN RAFIEN6 RAFIEN5 RAFIEN4 RAFIEN3 RAFIEN2 RAFIEN1 RAFIEN0 RAF6 RAF5 RAF4
ADCCNTB
31:16 CNTBADDR<31:16>
15:0 CNTBADDR<15:0>
ADCDMAB
31:16 DMABADDR<31:16>
15:0 DMABADDR<15:0>
ADCTRGSNS
31:16 LVL31 LVL30 LVL29 LVL28 LVL27 LVL26 LVL25 LVL24 LVL23 LVL22 LVL21 LVL20
15:0 LVL15 LVL14 LVL13 LVL12 LVL11 LVL10 LVL9 LVL8 LVL7 LVL6 LVL5 LVL4
ADCxTIME
‘x’ = 0-6
31:16 — ADCEIS<2:0> SELRES<1:0> DMAEN ADC
15:0 — — — — SAMC<9:0>
ADCEIEN1
31:16 EIEN31 EIEN30 EIEN29 EIEN28 EIEN27 EIEN26 EIEN25 EIEN24 EIEN23 EIEN22 EIEN21 EIEN20 E
15:0 EIEN15 EIEN14 EIEN13 EIEN12 EIEN11 EIEN10 EIEN9 EIEN8 EIEN7 EIEN6 EIEN5 EIEN4
ADCEIEN2
31:16 EIEN63 EIEN62 EIEN61 EIEN60 EIEN59 EIEN58 EIEN57 EIEN56 EIEN55 EIEN54 EIEN53 EIEN52 E
15:0 EIEN47 EIEN46 EIEN45 EIEN44 EIEN43 EIEN42 EIEN41 EIEN40 EIEN39 EIEN38 EIEN37 EIEN36 E
ADCEISTAT1
31:16 EIRDY31 EIRDY30 EIRDY29 EIRDY28 EIRDY27 EIRDY26 EIRDY25 EIRDY24 EIRDY23 EIRDY22 EIRDY21 EIRDY20 E
15:0 EIRDY15 EIRDY14 EIRDY13 EIRDY12 EIRDY11 EIRDY10 EIRDY9 EIRDY8 EIRDY7 EIRDY6 EIRDY5 EIRDY4 E
ADCEISTAT2
31:16 EIRDY63 EIRDY62 EIRDY61 EIRDY60 EIRDY59 EIRDY58 EIRDY57 EIRDY56 EIRDY55 EIRDY54 EIRDY53 EIRDY52 E
15:0 EIRDY47 EIRDY46 EIRDY45 EIRDY44 EI DY39 EIRDY38 EIRDY37 EIRDY36 ERDY43 EIRDY42 EIRDY41 EIRDY40 EIR
ADCANCON
31:16 WKUPCLKCNT<3:0> WKIEN7 WKIEN6 WKIEN5 WKIEN4 W
15:0 WKRDY7 WKRDY6 WKRDY5 WKRDY4 WKRDY3 WKRDY2 WKRDY1 WKRDY0 ANEN7 ANEN6 ANEN5 ANEN4 A
ADCDATAx
('x' = 0 to 63)
31:16 DATA<31:16>
15:0 DATA<15:0>
ADCxCFG
‘x’ = 0-7
(1)
31:16 ADCCFG<31:16>
15:0 ADCCFG<15:0>
ADCSYSCFG0
31:16 AN<31:16>
15:0 AN<15:0>
ADCSYSCFG1
31:16 AN<63:48>
15:0 AN<47:32>
Table 22-1: ADC SFR Summary
Register Name Bit
Range Bit 31/15 Bit 30/14 Bit 29/13 Bit 28/12 Bit 27/11 Bit 26/10 Bit 25/9 Bit 24/8 Bit 23/7 Bit 22/6 Bit 21/5 Bit 20/4 B
Note 1: Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash register
registers.
PIC32 Family Reference Manual
DS60001344E-page 22-10 © 2015-2019 Microchip Technology Inc.
Register 22-1: ADCCON1: ADC Control Register 1
Bit
Range
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
31:24
R/W-0 R-0, HS, HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TRBEN TRBERR TRBMST<2:0> TRBSLV<2:0>
23:16
R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FRACT SELRES<1:0> STRGSRC<4:0>
15:8
R/W-0 U-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 U-0
ON SIDL AICPMPEN CVDEN FSSCLKEN FSPBCLKEN
7:0
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IRQVS<2:0> STRGLVL DMABL<2:0>
Legend: HC = Hardware Set HS = Hardware Cleared
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1 = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 31 TRBEN: Turbo Channel Enable bit
1 = Enable the Turbo channel
0 = Disable the Turbo channel
bit 30 TRBERR: Turbo Channel Error Status bit
1 = An error occurred while setting the Turbo channel and Turbo channel function to be disabled regardless
of the TRBEN bit being set to ‘1’.
0 = Turbo channel error did not occur
Note: The status of this bit is valid only after the TRBEN bit is set.
bit 29-27 TRBMST<2:0>: Turbo Master ADCx bits
111 = Reserved
110 = ADC6 is selected as the Turbo Master
000 = ADC0 is selected as the Turbo Master
bit 26-24 TRBSLV<2:0>: Turbo Slave ADCx bits
111 = Reserved
110 = ADC6 is selected as the Turbo Slave
000 = ADC0 is selected as the Turbo Slave
bit 23 FRACT: Fractional Data Output Format bit
1 = Fractional
0 = Integer
bit 22-21 SELRES<1:0>: Shared ADC Resolution bits
11 = 12 bits (default)
10 = 10 bits
01 = 8 bits
00 = 6 bits
bit 20-16 STRGSRC<4:0>: Scan Trigger Source Select bits
11111 00100 - = Refer to the “ADC” chapter in the specific device data sheet for trigger source selections
00011 = Reserved
00010 = Global level software trigger (GLSWTRG) is not self-cleared
00001 = Global software trigger (GSWTRG) is self-cleared on the next clock cycle
00000 = No trigger
bit 15 ON: ADC Module Enable bit
1 = ADC module is enabled
0 = ADC module is disabled
Note: The ON bit should be set only after the ADC module has been configured.
bit 14 Unimplemented: Read as 0
PIC32 Family Reference Manual
DS60001344E-page 22-12 © 2015-2019 Microchip Technology Inc.
Register 22-2: ADCCON2: ADC Control Register 2
Bit Range Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
31:24
R-0, HS, HC R-0, HS, HC R-0, HS, HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BGVRRDY REFFLT EOSRDY CVDCPL<2:0> SAMC<9:9>
23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SAMC<7:0>
15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BGVRIEN REFFLTIEN EOSIEN ADCEIOVR ECRIEN ADCEIS<2:0>
7:0
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— ADCDIV<6:0>
Legend: HC = Hardware Set HS = Hardware Cleared r = Reserved
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 31 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit
1 = Both band gap voltage and ADC reference voltages (V
REF
) are ready
0 = Either or both band gap voltage and ADC reference voltages (V
REF
) are not ready
Data processing is valid only after the BGVRRDY bit is set by hardware, hence the application code must
check that the BGVRRDY bit is set to ensure data validity. This bit is set to when the ON bit0
(ADCCON1<15>) = 0.
bit 30 REFFLT: Band Gap/V
REF
/AV
DD
BOR Fault Status bit
1 = Fault in band gap or the V
REF
voltage while the ON bit (ADCCON1<15>) was set. Most likely a band
gap or V
REF
fault will be caused by a BOR of the analog V
DD
supply.
0 = Band gap and V
REF
voltage are working properly
This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1.
bit 29 EOSRDY: End of Scan Interrupt Status bit
1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in
the ADCCSS1 and ADCCSS2 registers) have completed scanning
0 = Scanning has not completed
This bit is cleared when ADCCON2<31:24> are read in software.
bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit
111 = 7 * 2.5 pF = 17.5 pF
110 = 6 * 2.5 pF = 15 pF
101 = 5 * 2.5 pF = 12.5 pF
100 = 4 * 2.5 pF = 10 pF
011 = 3 * 2.5 pF = 7.5 pF
010 = 2 * 2.5 pF = 5 pF
001 = 1 * 2.5 pF = 2.5 pF
000 = 0 * 2.5 pF = 0 pF
bit 25-16 SAMC<9:0>: Sample Time for the Shared ADC bits
1111111111 = 1025 T
AD
0000000001 = 3 T
AD
0000000000 = 2 T
AD
Where T
AD
= period of the ADC conversion clock for the Shared ADC controlled by the ADCDIV<6:0> bits.
bit 15 BGVRIEN: Band Gap/V
REF
Voltage Ready Interrupt Enable bit
1 = Interrupt will be generated when the BGVRRDY bit is set
0 = No interrupt is generated when the BGVRRDY bit is set
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-13
Section 22. 12-bit High-Speed SAR ADC
bit 14 REFFLTIEN: Band Gap/V
REF
Voltage Fault Interrupt Enable bit
1 = Interrupt will be generated when the REFFLT bit is set
0 = No interrupt is generated when the REFFLT bit is set
bit 13 EOSIEN: End of Scan Interrupt Enable bit
1 = Interrupt will be generated when EOSRDY bit is set
0 = No interrupt is generated when the EOSRDY bit is set
bit 12 ADCEIOVR: Early Interrupt Request Override bit
1 = Early interrupt generation is overridden and interrupt generation is controlled by the ADCGIRQEN1
and ADCGIRQEN2 registers
0 = Early interrupt generation is not overridden and interrupt generation is controlled by the ADCEIEN1
and ADCEIEN2 registers
bit 11 ECRIEN: External Conversion Request Interface Enable bit
1 = Enables ADC conversion start from external module (such as PTG)
0 = External modules cannot start ADC conversion
bit 10-8 ADCEIS<2:0>: Shared ADC Early Interrupt Select bits
These bits select the number of clocks (T
AD
)
prior to the arrival of valid data that the associated interrupt
is generated.
111 = The data ready interrupt is generated 8 ADC clocks prior to end of conversion
110 = The data ready interrupt is generated 7 ADC clocks prior to end of conversion
001 = The data ready interrupt is generated 2 ADC module clocks prior to end of conversion
000 = The data ready interrupt is generated 1 ADC module clock prior to end of conversion
Note: All options are available when the selected resolution, set by the SELRES<1:0> bits
(ADCCON1<22:21>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from 000 to
101 are valid. For a selected resolution of 6-bit, options from ‘000 to ‘011 are valid.
bit 7 Unimplemented: Read as ‘0
bit 6-0 ADCDIV<6:0>: Shared ADC Clock Divider bits
1111111 = 254 * T
Q
= T
AD
0000011 = 6 * T
Q
= T
AD
0000010 = 4 * T
Q
= T
AD
0000001 = 2 * T
Q
= T
AD
0000000 = Reserved
The ADCDIV<6:0> bits divide the ADC control clock (T
Q
) to generate the clock for the Shared ADC (T
AD
).
Register 22-2: ADCCON2: ADC Control Register 2 (Continued)
PIC32 Family Reference Manual
DS60001344E-page 22-14 © 2015-2019 Microchip Technology Inc.
Register 22-3: ADCCON3: ADC Control Register 3
Bit
Range
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADCSEL<1:0> CONCLKDIV<5:0>
23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DIGEN7
(5)
DIGEN6
(5)
DIGEN5
(5)
DIGEN4
(5)
DIGEN3
(5)
DIGEN2
(5)
DIGEN1
(5)
DIGEN0
(5)
15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0, HS, HC R/W-0 R-0, HS, HC
VREFSEL<2:0> TRGSUSP UPDIEN UPDRDY SAMP
(1,2,3,4)
RQCNVRT
7:0
R/W-0 R-0, HS, HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GLSWTRG GSWTRG ADINSEL<5:0>
(5)
Legend: HC = Hardware Set HS = Hardware Cleared
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1 = Bit is set ‘0 = Bit is cleared x = Bit is unknown
bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (T
CLK
) bits
Refer to the “12-bit High-Speed Successive Approximation Register (SAR)” chapter in the specific
device data sheet for the ADC Clock source selections.
bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (T
Q
) Divider bits
111111 = 126 * T
CLK
= T
Q
000011 = 6 * T
CLK
= T
Q
000010 = 4 * T
CLK
= T
Q
000001 = 2 * T
CLK
= T
Q
000000 = T
CLK
= T
Q
bit 23 DIGEN7: ADC7 Digital Enable bit
(5)
1 = ADC7 is digital enabled
0 = ADC7 is digital disabled
bit 22 DIGEN6: ADC6 Digital Enable bit
(5)
1 = ADC6 is digital enabled
0 = ADC6 is digital disabled
bit 21 DIGEN5: ADC5 Digital Enable bit
(5)
1 = ADC5 is digital enabled
0 = ADC5 is digital disabled
bit 20 DIGEN4: ADC4 Digital Enable bit
(5)
1 = ADC4 is digital enabled
0 = ADC4 is digital disabled
Note 1: The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the
bit is cleared. Also, usage of the SAMP bit will cause settings of the SAMC<9:0> bits (ADCCON2<25:16>)
to be ignored.
2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC. All Class 1 analog
inputs are not affected by the SAMP bit.
3: The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit
and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and
STRGSRC<4:0> bits should be set to ‘00000 to disable all external hardware triggers and prevent them
from interfering with the software-controlled sampling command signal SAMP and with the
software-controlled trigger RQCNVRT.
5: Depending on the device, the function will vary. Refer to the “ADC” chapter in the specific device data
sheet to determine the function that is available for your device.
© 2015-2019 Microchip Technology Inc. DS60001344E-page 22-17
Section 22. 12-bit High-Speed SAR ADC
Register 22-4: ADCTRGMODE: ADC Triggering Mode for Dedicated ADC Register
Bit
Range
Bit
31/23/15/7
Bit
30/22/14/6
Bit
29/21/13/5
Bit
28/20/12/4
Bit
27/19/11/3
Bit
26/18/10/2
Bit
25/17/9/1
Bit
24/16/8/0
31:24
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — SH6ALT<1:0> SH5ALT<1:0> SH4ALT<1:0>
23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SH3ALT<1:0> SH2ALT<1:0> SH1ALT<1:0> SH0ALT<1:0>
15:8
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STRGEN6 STRGEN5 STRGEN4 STRGEN3 STRGEN2 STRGEN1 STRGEN0
7:0
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSAMPEN6 SSAMPEN5 SSAMPEN4 SSAMPEN3 SSAMPEN2 SSAMPEN1 SSAMPEN0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 31-30 Unimplemented: Read as
bit 29-28 SH6ALT<1:0>: ADC6 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN6
bit 27-26 SH5ALT<1:0>: ADC5 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN5
bit 25-24 SH4ALT<1:0>: ADC4 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN4
bit 23-22 SH3ALT<1:0>: ADC3 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN3
bit 21-20 SH2ALT<1:0>: ADC2 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN2
bit 19-18 SH1ALT<1:0>: ADC1 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN1
bit 17-16 SH0ALT<1:0>: ADC0 Analog Input Select bit
11 01 - = Refer to the “ADC” chapter in the specific device data sheet for the available selections
00 = AN0
bit 15 Unimplemented: Read as
bit 14 STRGEN6: ADC6 Presynchronized Triggers bit
1 = ADC6 uses presynchronized triggers
0 = ADC6 does not use presynchronized triggers
bit 13 STRGEN5: ADC5 Presynchronized Triggers bit
1 = ADC5 uses presynchronized triggers
0 = ADC5 does not use presynchronized triggers
bit 12 STRGEN4: ADC4 Presynchronized Triggers bit
1 = ADC4 uses presynchronized triggers
0 = ADC4 does not use presynchronized triggers
bit 11 STRGEN3: ADC3 Presynchronized Triggers bit
1 = ADC3 uses presynchronized triggers
0 = ADC3 does not use presynchronized triggers


Produkt Specifikationer

Mærke: Microchip
Kategori: Ikke kategoriseret
Model: PIC32MZ1064DAB288

Har du brug for hjælp?

Hvis du har brug for hjælp til Microchip PIC32MZ1064DAB288 stil et spørgsmål nedenfor, og andre brugere vil svare dig




Ikke kategoriseret Microchip Manualer

Ikke kategoriseret Manualer

Nyeste Ikke kategoriseret Manualer