Microchip MCP1703 Manual


Læs nedenfor 📖 manual på dansk for Microchip MCP1703 (8 sider) i kategorien Ikke kategoriseret. Denne guide var nyttig for 3 personer og blev bedømt med 4.5 stjerner i gennemsnit af 2 brugere

Side 1/8
© 2006 Microchip Technology Inc. DS01025A-page 1
AN1025
INTRODUCTION
As system designers are forced to produce products
with increased features while maintaining a flat or
decreasing product cost, advancements in device
technology must be considered. To produce Integrated
Circuits (IC) with increased functionality at a
reasonable cost, IC manufacturers need to reduce the
overall silicon area. However, the functional and cost
benefits associated with smaller areas can not be
achieved without some system design trade-offs.
These smaller geometry ICs typically have a maximum
voltage rating of 3.0V or below, instead of the existing
maximum 5.0V rating.
This application note is intended to provide the system
designer with an overview of different options that
could be used to down convert an existing 5.0V system
rail to a regulated 3.0V.
The approaches discussed in this application note are
the Low Dropout Regulator (LDO), charge pump and
buck switch mode converter. Other options exist, but
they do not provide a regulated 3.0V. A summary of
these options, as well as a reference section containing
detailed design application note titles and data sheets,
appears at the end of the document.
LOW DROPOUT REGULATOR
A simple way of converting the 5.0V bus voltage to the
required regulated 3.0V is by using a low dropout
regulator. An LDO is nothing more than a three terminal
linear system providing closed-loop control. The
solution is easy to implement, requiring only the device
itself and an input and output capacitor.
LDO Operation
In Figure 1, we can see that an LDO is built from four
main elements: 1) pass transistor, 2) bandgap
reference, 3) operational amplifier, and 4) feedback
resistors. An LDO can be thought of as a variable
resistor. The output voltage is divided down by the
resistor divider and compared to a fixed bandgap
reference voltage. The operational amplifier controls
the drive to the pass transistor accordingly to equalize
the voltage on its inputs. The difference between the
bus voltage and the required output voltage is dropped
across the pass transistor. When the pass transistor,
shown as a P-Channel MOSFET, is turned fully ON,
there will be some finite amount of resistance and
therefore a voltage drop. This minimum voltage drop,
VDROPOUT
, will set how much higher the bus voltage
needs to be when compared to the output voltage in
order to regulate the output.
Designing With An LDO
Generating a well regulated 3.0V output is very easy
with an LDO. There are just a couple of specifications
that the circuit designer should take into consideration
when using an LDO. One specification is the output
voltage. Many LDOs are supplied in standard fixed out-
put voltages which typically include 3.0V. However,
some LDOs are offered with an adjustable output volt-
age. This requires the designer to use an external feed-
back resistor divider.
Another LDO specification is the typical dropout
voltage at load. The sum of the output voltage and the
typical dropout voltage must be less than the minimum
input voltage. If the sum is greater, the LDO will not be
able to regulate the output at minimum input voltages.
A very important specification that should not be over
looked is the requirements that some LDOs place on
the output capacitor. Certain LDOs require the output
capacitor to be either tantalum or aluminum electrolytic
to produce a stable system. These capacitors have a
large Equivalent Series Resistance (ESR) when
compared to ceramic capacitors. Tantalum or
aluminum electrolytic capacitors are normally cheaper
than ceramic capacitors when a large value of
capacitance is needed, but they are also usually larger
in size.
Author: Cliff Ellison
Microchip Technology Inc.
Converting A 5.0V Supply Rail To A Regulated 3.0V


Produkt Specifikationer

Mærke: Microchip
Kategori: Ikke kategoriseret
Model: MCP1703

Har du brug for hjælp?

Hvis du har brug for hjælp til Microchip MCP1703 stil et spørgsmål nedenfor, og andre brugere vil svare dig




Ikke kategoriseret Microchip Manualer

Microchip

Microchip ATECC608B Manual

4 September 2024
Microchip

Microchip HV860 Manual

4 September 2024
Microchip

Microchip EVB-LAN9255 Manual

4 September 2024
Microchip

Microchip LX4580 Manual

4 September 2024
Microchip

Microchip LX7720 Manual

4 September 2024
Microchip

Microchip AT32UC3A364 Manual

2 September 2024

Ikke kategoriseret Manualer

Nyeste Ikke kategoriseret Manualer

Gigabyte

Gigabyte ODIN GT 550W Manual

23 November 2024
Stamos

Stamos S-PLASMA 60U Manual

23 November 2024
Velbus

Velbus VMBPIRO-W-20 Manual

23 November 2024
Honor

Honor 90 Pro Manual

23 November 2024
Honor

Honor 80 SE Manual

23 November 2024
Medela

Medela Safe & Dry Manual

22 November 2024
Jane

Jane First Potty Manual

22 November 2024