Hobbywing XeRun XR10 Stock Spec G2 Manual


Læs nedenfor 📖 manual på dansk for Hobbywing XeRun XR10 Stock Spec G2 (2 sider) i kategorien Radiografisch bestuurbaar speelgoed. Denne guide var nyttig for 6 personer og blev bedømt med 4.5 stjerner i gennemsnit af 2 brugere

Side 1/2
03
02
06
HW-SMA524ENG01-A120240131
SHENZHEN HOBBYWING TECHNOLOGY Co., LTD. · 101-402 Building 4, Yasen Chuangxin Hi-tech Industrial Park, 8 Chengxin Road, Baolong Industrial Town, Longgang District, Shenzhen, China. January 31, 2024
AT T ENT IO N
This is an extremely powerful brushless motor system. For your safety and the safety of those around you, we strongly recommend removing the pinion gear attached
to the motor before performing calibration and programming functions with this system. It is also advisable to keep the wheels in the air when you turn on the ESC.
• 3 select-to-use profiles applicable to 1/10 RC car racing.
• Separate PRG/FAN port is able to power an external fan for maximize cooling performance or connect a LCD program box or OTA Programmer to the ESC.
• Variable frequency regulation of PWM & brake frequencies allows users to precisely regulate the driving & braking forces (of the motors).
• Multiple protections: low-voltage cutoff protection, ESC and motor thermal protection, and fail safe (throttle signal loss protection),reverse polarity protection (the external standard cappack will
still be damaged if battery reversal occurs).
• Data logging for recording the maximum ESC/motor temperature, motor RPM, and others in real time.
• Firmware upgrade via Hobbywing multifunction LCD G2/Pro program box or OTA Programmer (item sold separately).
• To avoid short circuits, ensure that all wires and connections are well insulated before connecting the ESC to related devices.
• Ensure all devices in the system are connected correctly to prevent any damage to the system.
• Read through the manuals of all power devices and chassis and ensure the power configuration is rational before using this unit.
• Please use a soldering iron with the power of at least 60W to solder all input / output wires and connectors.
• Stop usage once the casing of the ESC exceeds 90 / 194 as this may cause damage to both the ESC and motor. Hobbywing recommends setting the “ESC Thermal Protection” to
105 / 221 (this refers to the internal temperature of the ESC).
• The battery must be disconnected after use.There is a small draw even when the system is off,and will eventually fully drain the battery.This may cause damage to the ESC, and will NOT BE
COVERED UNDER WARRANTY.
1A. Running Mode
Option 1: Forward with Brake
Racing mode. It has only forward and brake functions.
Option 2: Forward/ Reverse with Brake
This option is known to be the “training” mode with “Forward/ Reverse with Brake” functions. The vehicle only brakes on the first time you push the throttle trigger to the reverse/brake
position. If the motor stops when the throttle trigger return to the neutral position and then re-push the trigger to reverse position,the vehicle will reverse,if the motor does not completely
stop,then your vehicle won’t reverse but still brake,you need to return the throttle trigger to the neutral position and push it to reverse again.This method is for preventing vehicle from being
accidentally reversed.
Option 3: Forward and Reverse
The motor will reverse immediately when the throttle trigger is pushed to reverse position. This mode is generally used in special vehicles.
1B. Max. Reverse Force
The reverse force of the value will determine its speed. For the safety of your vehicle, we recommend using a low amount.
1C. Cutoff Voltage
Sets the voltage at which the ESC lowers or removes power to the motor in order to either keep the battery at a safe minimum voltage (for LiPo batteries). The ESC monitors the battery voltage
all the time, it will immediately reduce the power to 50% (in 2 seconds) and cut off the output 40 seconds later when the voltage goes below the cutoff threshold. The RED LED will flash a
short, single flash that repeats ( , , ) to indicate the low-voltage cutoff protection is activated. ☆☆☆
Option 1: Disabled
The ESC does not cut the power off due to low voltage. We do not recommend using this option when you use any LiPo battery as you will irreversibly damage the product. You need to select
this option when you are using a NiMH pack.
Option 2: Auto
The ESC calculates the corresponding cutoff voltage for the battery shall be 7.0V.
Option 3: Customized
The customized cutoff threshold is a voltage for the whole battery pack (adjustable from 3.0V to 7.4V).
1D. ESC Thermal Protection
The output from the ESC will be cut off with the value you have preset.
The GREEN LED flashes ( , , ) when the ESC temperature reaches to the preset value. The output will not resume until the ESC temperature gets down. ☆☆☆
Warning! Please do not disable this function unless you’re in a competition. Otherwise the high temperature may damage your ESC and even your motor.
1E. Motor Thermal Protection
The GREEN LED flashes ( , , ) when the motor temperature reaches to the preset value. The output will not resume until the motor temperature gets down. ☆☆ ☆☆ ☆☆
Warning! Please do not disable this function unless you’re in a competition. Otherwise the high temperature may damage your motor and even your ESC. For non-Hobbywing
motor, the ESC may get this protection activated too early/late because of the different temperature sensor inside the motor. In this case, please disable this function and
monitor the motor temperature manually.
1F. BEC Voltage
BEC Voltage can be set to 6V or 7.4V. Most servos will operate on 6V. If you are using a servo that can support 7.4V the setting can be changed.
1G. Remote Off
Option 1: Enabled
Users can simply push and hold the brake trigger for 6 seconds. This option allows the user to turn off the ESC without pushing the ON/OFF button switch.
Option 2: Disabled
Users must turn off the ESC by pressing the ON/OFF switch button from the ESC.
1H. Motor Rotation/Direction
With the motor shaft faces you (the rear end of the motor is away from you), increase the throttle input, the motor (shaft) will rotate in the CCW/CW direction if the “Motor Rotation /
Direction” set to “CCW/CW”. Generally, the vehicle runs forward when the motor (shaft) rotates in the CCW direction. However, some vehicles only run forward when the motor rotates in the
CW direction due to the different chassis design. In that case, you only need to set the “Motor Rotation/Direction” to “CW).
1I. Phase-AC Swap
If the A/C wire of ESC connect to A/C wire of motor with crossed way (A wire of ESC connects to C wire of motor, C wire of ESC connects to A wire), set this item as Enable.
Warning! When #A/#B/#C wire of ESC connect to #A/#B/#C wire of motor correspondingly, do not Set to Enable. Otherwise it will damage the ESC and motor.
2A. Throttle Rate Control
This item is used to control the throttle response. The higher the throttle rate,the more aggressive the throttle will be applied. A suitable rate can help driver to control the vehicle properly
during the starting-up process. Generally, you can set it to a high value to have a quick throttle response if you are proficient at throttle control.
2B. Throttle Curvature
This parameter is used to set the throttle curve.The larger the curvature setting,the stronger the throttle output in the previous stage; the smaller the curvature
setting, the softer the throttle output in the previous stage. As shown in the schematic diagram of the curve on the right.
2C. Neutral Range
As not all transmitters have the same stability at “neutral position”, please adjust this parameter as per your preference. You can adjust to a bigger value when
this is required.
2D. Initial Throttle Force
It also called as minimum throttle force. You can set it according to wheel tire and traction. If the ground is slippery, please set a small throttle force. Some motors
have strong cogging effect with lower FDR ,if there is any cogging with very light throttle input,you can try to increase the initial throttle force.
2E. Coast
This function allows the motor to naturally and smoothly reduce rpm/speed, and the vehicle will not experience sudden deceleration during the throttle release process. The higher the value,
the stronger the "coasting" feeling.
What is COAST?
When a vehicle has a larger final drive ratio, the tendency of having a “drag” feel is higher. The “COAST” technology is to allow the car to roll (coast) even when the final drive ratio is high.
The Coast function brings better and smoother control feeling to racers. Some drivers will refer to this to the traditional brushed motors.
Note: The Coast setting will not work if the drag brake is not set to 0%.
2F. PWM Drive Frequency
The acceleration will be more aggressive at the initial stage when the drive frequency is low; a higher drive frequency is smoother but this will create more heat to the ESC.If set this item to
"Customized", then the PWM frequency can be adjusted to a variable value at any 0-100% throttle input, Please choose the frequencies as per the actual test
results of your vehicles.
2G. Softening Value
It allows users to fine-tune the bottom end, change the driving feel, and maximize the driving efficiency at different track conditions. The higher the "Softening Value ", the softer the bottom
end. Sometimes drivers may feel the power of the bottom end is too aggressive. Little throttle input usually brings too much power to the car and make it hard to control at the corners, this is
HOBBYWING's solution to help bottom end traction.
2H. Softening Range
It's the range to which "Softening Value” starts and ends. If set to 30% then the softening range will be from 0 throttle to 30% throttle.
2I. RPM Limit
It is used to set the max. RPM value of the motor.Set corresponding values according to competition rules.
Note: The RPM limit value here corresponds to a 2-pole motor. If a 4-pole motor (such as a Justock Handout motor) is used, it needs to be divided by 2 to obtain the
corresponding mechanical rpm value.For example, using a Justock Handout 13.5T (3200KV) motor, if you want to limit the rpm to 22000rpm (mechanical rpm), you need
to set the RPM limit value to: 22000*2=44000
3A. Drag Brake
It is the braking power produced when releasing from full speed to neutral position. This is to simulate the slight braking effect of a neutral brushed motor while coasting. It’s not recommended
for buggy and monster truck.
(Attention! Drag brake will consume more power and heat will be increased, use it cautiously.)
3B. Drag Brake Rate
This parameter is used to control the speed of the drag-brake response. Setting a suitable value can improve the drag braking effect of the vehicle, thus, improving drivability to suit each users.
The value can be adjusted up to 20 levels. Increasing the value will result in a greater drag brake effect. The other "Auto" option is available as well to choose from. “Auto” will intelligently
adjust the drag brake acceleration according to the current speed. The faster the current speed/rpm,the smaller the drag brake rate, vice versa.
3C. Drag Brake Frequency
The brake force will be larger if the frequency is low; you will get a smoother brake force when the value is higher. Please choose the frequencies as per the actual test results of your vehicles.
3D. Max. Brake Force
This ESC provides proportional braking function; the braking effect is decided by the position of the throttle trigger. It sets the percentage of available braking power when full brake is applied.
Large amount will shorten the braking time but it may damage your pinion and spur.
3E. Brake Rate Control
It’s adjustable from 1 to 20 (step: 1), the lower the brake rate, the more limit on the brake response. A suitable rate can aid the driver to brake his vehicle correctly. Generally, you can set it to a
high value to have a quick brake response.
3F.Brake Curvature
This parameter is used to set the brake curve. The larger the curvature setting,the stronger the brake in the previous stage; the smaller the curvature setting, the
softer the brake in the previous stage. As shown in the schematic diagram of the curve on the right.
3G. Brake Frequency
The brake force will be larger if the frequency is low; you will get a smoother brake force when the value is higher.If set this item to "Customized", then the brake
frequency can be adjusted to a variable value at any 0-100% throttle input, Please choose the frequencies as per the actual test results of your vehicles.
1. Turn on the transmitter, ensure all parameters (D/R, Curve, ATL) on the throttle channel are at default (100%). For transmitter without LCD,
please turn the knob to the maximum, and the throttleTRIM” to 0. Please also turn the corresponding knob to the neutral position.
This step
can be skipped if the radio's settings are default.
2. Start by turning on the transmitter with the ESC turned off but connected to a battery. Holding the “ON/OFFbutton, the RED LED on the
ESC starts to flash (the motor beeps at the same time), and then release the ON/OFF button.
Note: Beeps from the motor may be low sometimes, and you can check the LED status instead.
Begin using your ESC by calibrating with your transmitter. We strongly recommend Hobbywing users to use the “Fail Safe” function on the radio system and set (F/S) to “Output OFF” orNeutral Position”.
Example of calibrating Neutral range and Endpoint.
1. Motor Connection
The motor wiring is different between the sensored and the sensorless; please only follow the introductions below.
• Sensored Motor Connection
Sensored motor connection MUST connect A from the ESC to A on the motor, B to B, and C to C, with the sensor harness connected any variation of the motor to ESC connections may cause
damage.
• Sensorless Motor Connection
Users do not need to be worried in regards to the connectivity with the A/B/C(ESC and motor) as there is no polarity. You may find it necessary to swap two wires if the motor runs in reverse.
2. Receiver Connection
The throttle control cable on the ESC has to be plugged into the throttle (TH) channel on the receiver. The throttle control cable has an output voltage of 6V / 7.4V to the receiver and steering
servo, please do not supply additional power to the receiver, otherwise the esc may be damaged. If additional power is required, disconnect the red wire on the throttle plug from the ESC.
3. Battery Connection
Proper polarity is essential. Please ensure positive (+) connects to positive (+), and negative (-) connects to negative (-) when plugging in the battery! When reverse polarity is applied to the ESC
from the battery, the external standard cappack will be damaged.
3. Set the neutral point, the full throttle endpoint and the full brake endpoint.
• Leave transmitter at the neutral position, press the “ON/OFF” button, the GREEN LED flashes 1 time and the motor beeps 1 time to accept the neutral position.
• Pull the throttle trigger to the full throttle position, press the “ON/OFF” button, the GREEN LED blinks 2 times and the motor beeps 2 times to accept the full throttle endpoint.
• Push the throttle trigger to the full brake position, press the “ON/OFF” button, the GREEN LED blinks 3 times and the motor beeps 3 times to accept the full brake endpoint.
4. The motor can be started 3 seconds after the ESC/Radio calibration is complete.
Move the throttle trigger to the
full brake/reverse
Press the ON/OFF button.
The Green LED flashes three
times and motor emits
“Beep-Beep-Beep
tone.
04
05
1
Diagram of Throttle Curvature
Output
Power
Throttle
Throttle Curvature 0
Throttle Curvature 0
Throttle Curvature 0
Diagr am of B rake Cu rvatu re
Brake
For ce
Brake Pos it ion
Brake Curvature0
Brake Curvature0
Brake Curvature0
Release the
ON/OFF button
once the LED
flashes.
With the throttle trigger
in the neutral position
Press the ON/OFF button.
The Green LED flashes
once and
motor emits
“Beep” tone.
Press the ON/OFF button.
The Green LED flashes
twice and motor
emits “Beep-
Beep” tone.
Move the throttle trigger to the
full throttle
Cont./Peak Current
Motor Type
Applications
100A/500A
Sensored / Sensorless Brushless Motors
Stock Class of 1/10 Touring Car and Buggy Racing, 1/10 Drift
Motor Limit
Model XERUN XR10 STOCK SPEC G2
LiPo/NiMH Cells
BEC Output
Size/Weight
Programming Port
2S LiPo(Only)
6V/7.4V Adjustable,Continuous Current of 5A (Switch-mode)
34.8x30x13.8mm / 63g(w/ wires)
PRG/FAN Port
With 2S LiPo: 10.5T
Motor
Blue (A)
Orange (C)
Sensor port of motor
Yellow (B)
Sensor wire
Battery
Electronic Speed Controller
Receiver
Note: The above is the parameter table corresponding to the factory firmware of the esc, mainly used for Zero Timing(Blinky) competitions.
2
3
Short press the power button to turn on the ESC in the off state, and long press the power button to turn off the ESC.
Attention!
1.
After the esc operates at a high load, the temperature of the aluminum casing is very high,for safety,we suggest letting the esc cool naturally for one or two minutes before
pressing the button to shut down, or using the "Remote Off" function to shut down (when the parameter"Remote Off" is set to"Enabled", the throttle trigger maintains full
brake for 6 seconds, the esc will be turned off automatically).
2.
To prevent accidental shutdown in racing, pressing the power button cannot shut down the esc while the motor is running,if there is an emergency, battery plugs can be
pulled out to turn off the ESC.
Throttle ControlBrake Control
3%~10% Adjustable (Step: 1%)2C Neutral Range
Unlimited2I RPM Limit
1~15 Adjustable (Step: 1)2D Initial Throttle Force
4K2K
2F PWM Drive Frequency 1K
2A Throttle Rate Control 1~30 Adjustable (Step: 1)
2E Coast 0%~15% Adjustable (Step: 0%)
2G Softening Value 0~30° Adjustable (Step: 1°)
3A Drag Brake Force 0%~100% Adjustable (Step: 1%)
3B Drag Brake Rate Auto
0.5K
1~20 Adjustable (Step: 1)
3D Max. Brake Force 0%~100% Adjustable (Step: 1%)
3C Drag Brake Frequency 1~16K Adjustable (Step: 1K)
3E
3F
Brake Rate Control
Brake Curvature
1~20 Adjustable (Step: 1)
Enabled1G Remote Off Disabled
CW1H Motor Rotation CCW
Enabled1I Phase-AC Swap Disabled
Customized2B Throttle Curvature -10~10 Adjustable (Step: 1)
Customized-10~10 Adjustable (Step: 1)
8K 12K 16K 24K 32K Customized
2K1K3G Brake Frequency 0.5K 4K 8K 12K 16K
20%10%2H Softening Range 0% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75%
Customized
10000RPM~88000RPM Adjustable (Step: 1000RPM)
Parameter ValuesSection Item Programmable Items
Forward and ReverseForward/ Reverse with Brake
General Setting
1A Running Mode Forward with Brake
3.0~7.4V Adjustable (Step: 0.1V)Auto (3.5V/Cell)Cutoff Voltage Disabled1C
75%50%1B Max. Reverse Force 25% 100%
125 /257
105 /221℃ ℉1D ESC Thermal Protection Disabled
1F BEC Voltage
125 /257
105 /221℃ ℉1E Motor Thermal Protection Disabled
7.4V6V
USER MANUAL
XERUN XR10 STOCK SPEC G2
Brushless Electronic Speed Controller
01
CAUT IO NS
Thank you for purchasing this HOBBYWING product! Please read this
declaration carefully before use, once you use the product, we will
assume that you have read and agreed with all the content. Any
improper use may cause personal injury and damage to the product
and related devices, so please strictly follow the instruction during
installation and use. Because we have no control over the
use,installation, or maintenance of this product, no liability may be
assumed for any damages or losses resulting from the use of the
product. We do not assume responsibility for any losses caused by
unauthorized modifications to our product.We have the right to
modify our product design, appearance, features and usage
requirements without notification. We, HOBBYWING, are only
responsible for our product cost and nothing else as result of using
our product.Regarding the possible semantic different between two
different versions of declaration, for users in mainland China,please
take the Chinese version as standard; for users in other
regions,please take the English version as standard.
AT T ENT IO N


Produkt Specifikationer

Mærke: Hobbywing
Kategori: Radiografisch bestuurbaar speelgoed
Model: XeRun XR10 Stock Spec G2

Har du brug for hjælp?

Hvis du har brug for hjælp til Hobbywing XeRun XR10 Stock Spec G2 stil et spørgsmål nedenfor, og andre brugere vil svare dig




Radiografisch bestuurbaar speelgoed Hobbywing Manualer

Radiografisch bestuurbaar speelgoed Manualer

Nyeste Radiografisch bestuurbaar speelgoed Manualer

Amewi

Amewi Hyper Go Manual

1 Oktober 2024
Carson

Carson Drift Burner Manual

30 September 2024
Biltema

Biltema 45-8119 Manual

30 September 2024
Traxxas

Traxxas Stampede Manual

28 September 2024
Futaba

Futaba 2PL Manual

26 September 2024
Futaba

Futaba SKYSPORT_4YBF Manual

16 September 2024
Spektrum

Spektrum DX5 RUGGED Manual

15 September 2024
Futaba

Futaba 8J Manual

14 September 2024